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Abstract
Context
Addressing ecosystem degradation in the Anthropocene will require ecological restoration across large spatial 
extents. Identifying areas where natural regeneration will occur without direct resource investment will 
improve scalability of restoration actions. 
Objectives
An ecoregion in need of large scale restoration is the Great Basin of the Western US, where increasingly large 
and frequent wildfires threaten ecosystem integrity and its foundational shrub species. We develop a 
framework to forecast where postwildfire regeneration of sagebrush cover (Artemisia spp.) is likely to occur 
within the burnt areas across the region (> 900,000 km2). 
Methods
First, we parameterized population models using Landsat satellitederived time series of sagebrush cover. 
Second, we evaluated the outofsample performance by predicting natural regeneration in wildfires not used 
for model training. This model assessment reproduces a managementoriented scenario: making restoration 
decisions shortly after wildfires with minimal local information. Third, we asked how accounting for 
increasingly finescale spatial heterogeneity could improve model forecasting accuracy. 
Results
Regionallevel models revealed that sagebrush postfire recovery is slow, estimating an 80year time horizon 
to reach an average cover at equilibrium of 16.6 % (CI95%: 9 – 25). Accounting for wildfire and within
wildfire spatial heterogeneity improved outofsample forecasts, resulting in a mean absolute error of 
3.5±4.3% cover, compared to the regional model with an error of 7.2±5.1% cover. 
Conclusions
We demonstrate that combining population models and nonparametric spatial matching provides a flexible 
framework for forecasting plant population recovery. Models for population recovery applied to Landsat
derived time series will assist restoration decisionmaking, including identifying priority targets for 
restoration.
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Introduction
Natural regeneration of native plant communities 

in disturbed landscapes can be an economical and 
ecologically attractive option for restoration (Shono 
et al. 2007; Jones et al. 2018; Strassburg et al. 2019). 
As climate change induces increasingly large disturbances 

the need for economically feasible strategies, such as 
natural regeneration, will become even more acute 
(Holl and Aide 2011). Yet, adopting natural regeneration 
as a management tool is challenged by variable rates 
of ecological succession, particularly at large spatial 

1



extents (Zahawi et al. 2014; Brancalion et al. 2016; 
Caughlin et al. 2019). Developing quantitative models 
that can forecast spatial variability in natural regeneration 
is a longstanding and largely unrealized goal in 
restoration ecology (Brudvig and Catano, In press). 
Ecological forecasts of ecosystem recovery derived 
from quantitative models would support land management 
by identifying sites where natural regeneration is a 
feasible restoration strategy (Marescot et al. 2013; 
Chazdon and Guariguata 2016; Dietze et al. 2018; 
Strassburg et al. 2019; Crouzeilles et al. 2020). However, 
multiple barriers have impeded the development of 
forecasting models in restoration ecology. These barriers 
include multivariate patterns of environmental 
heterogeneity, the complexity of ecological process 
models, and the lack of specieslevel time series data 
across large spatial extents. 

One difficulty in developing forecasts for ecological 
succession stems from the multivariate, nonlinear, 
and interactive effects of biotic and abiotic factors 
across scales (Rollinson et al. 2021). Such interactions 
lead to changing relationships among environmental 
and biological variables across space and time, thereby 
making ecological forecasts difficult (Zipkin et al. 
2021). Nonparametric methods can overcome difficulties 
associated with multivariate effects and often show 
superior performance in ecological predictions compared 
to regressionbased models that quantify effect sizes 
for each environmental covariate directly (e.g., Barnard 
et al., 2019). Spatial matching is a nonparametric 
approach that provides a flexible way to predict an 
unknown ecological process based on the environmental 
similarity between geographically distant locations 
(Kirkman et al. 2013; Adler et al. 2020). This method 
relies on a similarity score to find a physical, or construct 
a synthetic, reference site to a focal location where an 
ecological forecast is needed (Butsic et al. 2017; Ribas 
et al. 2021). Spatial matching also allows for hierarchical 
combinations that can account for environmental 
variation across multiple scales (Rollinson et al., 2021). 
For example, Renne et al. (2021) used spatial matching 
to overcome computational challenges in a crossscale 
analysis of individual plant performance as a function 
of ecosystem water balance. Spatial matching has also 
enabled causal inference on the effectiveness of policy 
interventions from observational data (Brandt et al. 
2019; Fick et al. 2021; SimlerWilliamson and Germino 
2022). Interpretable spatial matches based on ecological 
similarity are likely to benefit model adoption by 
managers, including potential recognition of model 
strengths and shortcomings when confronted with local 
knowledge and observations (Radchuk et al. 2019a). 
Multiscale, hierarchical matching is particularly 
relevant for heterogeneous landscapes where 

environmental variation crosses scales from regional 
gradients to locally varying site characteristics (Diaz 
et al. 1998; Mertes et al. 2020).

In addition to multivariate environmental 
heterogeneity, the complexity of ecological processes 
complicates the development of forecasting models. 
For example, relationships between population dynamics 
and abiotic drivers at the plot level can be challenging 
to transfer to other locations (Davies et al. 2011; 
Applestein et al. 2021). Processbased models are 
expected to improve forecasting accuracy, relative to 
phenomenological regressionbased models, by 
representing mechanistic relationships (Purves and 
Pacala 2008; Dietze 2017; Hefley et al. 2017). Such 
processbased models often include endogenous 
feedbacks of population change, such as density 
dependence, that lead to nonlinear system dynamics 
(Hastings et al. 1993, 2018). Therefore, a fundamental 
challenge to confronting process models with real data 
is balancing the tradeoff between complex, but more 
realistic, and parsimonious, but potentially oversimplified 
models (Clark et al. 2020; Fer et al. 2021). Population 
models present a potential solution to this tradeoff by 
simplifying ecological complexity while focusing on 
the population dynamics of a single species (Tredennick 
et al. 2016). For example, the Gompertz model for 
unstructured populations (i.e., the per capita growth 
rate is the same for all individuals in the population, 
regardless of individual characteristics such as size, 
genotype, or health status) is a simple, regression
based framework that quantifies growth rate and density 
dependence and is widely used to model time series 
of population data in fisheries and wildlife applications 
(Rossetto et al. 2015; Barbraud et al. 2018, p. 20; 
JohnsonBice et al. 2021). However, despite its potential 
utility for forecasting plant population recovery after 
disturbance, the Gompertz model has not been widely 
used in plant ecology (but see Damgaard et al., 2002; 
Tredennick et al., 2016).

Data limitation provides one explanation for the 
relative lack of models to forecast plant population 
recovery after largescale disturbances. Whereas field
based monitoring of individual plants is the foundation 
of plant population ecology, these data are logistically 
difficult to collect over large spatial and temporal 
extents (Gurevitch et al. 2016). Trajectories of population
level changes provide an alternative to marking and 
monitoring individual plants. In some cases, unstructured 
population models informed by temporal changes in 
percent cover offer equivalent predictive power to 
structured population models that rely on individual
level data (Tredennick et al. 2017; Goodsell et al. 
2021). The utility of modeling time series of plant 
cover with unstructured population models, such as 
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the Gompertz model, hints at using remote sensing as 
a data source for plant demography. Remotely sensed 
data, such as the multidecadal, globally extensive 
Landsat satellite imagery archive, can accurately map 
species and functional group cover over large areas 
(Homer et al. 2020; Larson and Tuor 2021). We propose 
that satellite imagery provides an unprecedented data 
source to model plant population recovery at broad 
spatial extents relevant for land management. 

In this paper, we use Landsat satellitederived cover 
trajectories to forecast population recovery of foundational 
shrub species (sagebrush, Artemisia spp.) in the Western 
United States. Over the last century, altered wildfire 
regimes and other disturbance factors have reduced or 
altered intact sagebrush steppe habitat to nearly half 
of its former extent (Pyke et al. 2015; Mahood and 
Balch 2019). Despite active restoration efforts aimed 
to counteract ecosystem degradation (Pilliod et al. 
2017; Copeland et al. 2018), including over US $100 
million spent annually, restoration of the sagebrush 
steppe remains a challenge (James et al. 2013; Knutson 
et al. 2014). A large proportion of the restoration and 
conservation efforts aim to assist postfire recovery of 
sagebrush stands, which provide wildlife habitat and 
dominate large areas of the western US (Miller et al. 
2011; Davies et al. 2011; Chambers et al. 2017; Pilliod 
et al. 2020). The geographical scope of historic 
degradation and the increasing impacts of altered 
wildfire regimes call for costefficient restoration 
strategies. Allocating restoration interventions in 
sagebrush steppe will benefit from spatial forecasts of 
natural regeneration to limit the geographical scope 
of potential interventions (James et al. 2013; Copeland 
et al. 2021; Duchardt et al. 2021). 

We used hierarchical spatial matching and regression
based unstructured population growth models to develop 
spatiotemporal forecasts of sagebrush cover in post
wildfire landscapes that had no documented restoration 
treatments. We applied our framework to a subset of 
wildfires that occurred between 1987 and 2007 and 
evaluate the forecasting accuracy of our approach using 
outofsample validation. By leaving out entire wildfire 
sites for model validation, we directly quantify how 
well our models can forecast the recovery (i.e., the 
trajectory of sagebrush cover postwildfire) at wildfires 
where no data are available. Our validation approach 
corresponds to the management need to make decisions 
with minimal sitelevel information on plant demography. 
We asked the following questions:

(i) How accurately can a simple population growth 
model, i.e., the Gompertz model, forecast natural 
regeneration of postwildfire sagebrush cover?

(ii) How does spatial matching of wildfires combined 

with the population model improve the forecasting 
accuracy of natural regeneration? 

(iii) Does accounting for withinwildfire heterogeneity 
improve the forecasting accuracy of natural regeneration?

Methods
The central data source in our study is the National 

Land Cover Database (NLCD, now rebranded as 
RCMAP; Rangeland Condition Monitoring Assessment 
and Projection), which maps the annual cover of plant 
functional groups at 30m spatial resolution across the 
Western US, including the Great Basin ecoregion 
(Rigge et al. 2019; Homer et al. 2020). The NLCD 
database is derived from the Landsat satellite archive, 
with backpropagated estimates of sagebrush cover 
resulting in a time series from 1985 to 2018 with cross
validated accuracy of RMSE at 3.4% cover and R2 of 
0.63. We focus on modeling the sagebrush fractional 
component at the genus level (Artemisia spp.) as a 
tradeoff between NLCD accuracy and demographic 
similarity within Artemisia spp. (Shultz 2009). The 
sagebrush fractional component is mostly representative 
of big sagebrush (Artemisia tridentata); but also includes 
several less common congeneric species with similar 
demographic traits (Shultz 2009; Rigge et al. 2019). 
We selected locations that burnt only once since 1950 
until present time, had at least 10 years of postfire 
recovery, and had no documented restoration treatments 
after wildfire events (Fig. 1). We used a historic wildfire 
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Fig. 1 The extent of the study area showing the Great Basin 
ecoregion over the US state boundaries (gray lines). Naturally 
regenerating wildfire polygons are indicated by grey points, 
with the size of the points indicating the polygon area. Map 
lines delineate study areas and do not necessarily depict 
accepted national border lines. 



dataset (Welty and Jeffries 2021) and the Land Treatment 
Digital Library (Pilliod et al. 2019) to select the sites 
that met these criteria. As none of our sites received 
restoration treatments (sensu Holl and Aide 2011), we 
consider all sites to be naturally regenerating, albeit 
at different rates. See the GitHub repository referenced 
in the Data Availability statement for documented 
geospatial processing steps. Our selection process 
resulted in N = 430 wildfire areas (polygons) burnt 
once between 1987 and 2007 without subsequent 
wildfires until the end of the NLCD time series (2018). 
Although some wildfire polygons in our dataset represent 
a nontreated portion of a larger wildfire, we refer to 
our sample units as wildfires for the rest of the manuscript. 
The area of wildfires ranged from 41 to 2465 ha, 
resulting in a total of 1,269,744 wildfire pixels from 
the NLCD time series (Figs. 1 & 2). The length of the 
time series ranged between 11 and 31 years since a 
wildfire event. 

Hierarchical spatial matching
The Great Basin ecoregion is characterized by a 

high degree of environmental variation at both local 
and regional extents (from less than 0.1 to >900,000 
km2), including elevation, soil, and climate patterns. 
We used spatial matching to forecast sagebrush cover 
trajectories for each wildfire by identifying 
environmentally similar reference locations. We limited 
the number of possible covariates in spatial matching 
to variables with demonstrated relationships to sagebrush 
population dynamics. Specifically, higher elevation 
and higher annual precipitation positively correlate 
with sagebrush regeneration, while temperature extremes 
and heat load are associated with slower recovery and 
lower sagebrush density (Knutson et al. 2014; Tredennick 
et al. 2016; Requena Mullor et al. 2019). Similarly, 
soil characteristics and its water holding capacity, 

particularly in early spring, can determine sagebrush 
seedling recruitment and juvenile survival (Shriver et 
al. 2019; O’Connor et al. 2020). Based on these results, 
we extracted remotely sensed data products, including 
topographic (Farr et al. 2007; Theobald et al. 2015), 
climate (Daly et al. 2015), soil (Chaney et al., 2019; 
NASA: http://nsidc.org/data/smap), and prewildfire 
sagebrush (Homer et al. 2020) to develop covariates 
for matching (see Appendix S1: Table S1 for the full 
list of covariates used in the spatial analysis).

The spatial matching procedure included two 
successive and nested steps. First, at the wildfire level, 
the spatial matching included finding a reference 
wildfire, i.e., a biophysically similar site, from the 
entire dataset based on a suite of abiotic and biotic 
covariates (i.e., wildfiretowildfire matching, Appendix 
S1: Table S1). We used the shortest Mahalanobis 
distance metric to form each pair of ecologically similar 
wildfires. The Mahalanobis distance accounts for the 
covariance between the environmental factors and 
represents a distance measure in an orthogonal 
multivariate space where covariates are centered on 
their means and pairwise correlations between them 
are zero (McCune et al. 2002). Second, to account for 
withinwildfire variation, i.e., within each wildfire 
polygon, we grouped ecologically similar pixels into 
clusters based on a set of abiotic and biotic covariates 
at the pixel level (Table S1). Based on the identified 
clusters within each wildfire, we matched two 
environmentally similar clusters from the reference 
and focal wildfires using the shortest pairwise 
Mahalanobis distance between the means of cluster
level covariates. To group environmentally and 
ecologically similar pixels into clusters, we scaled and 
centered pixellevel values and applied kmeans 
algorithm with the number of clusters, M, ranging 
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Fig. 2 An example of a wildfire 
polygon highlighted by the 
purple dashed line in Fig. 1 
with color intensity indicating 
sagebrush cover before the 
wildfire event based on the 
National Land Cover Database 
(A). Clusters of pixels within 
the same wildfire (BE) 
grouped by similarity in 
topography, soil organic 
carbon, and predisturbance 
sagebrush cover. Starting 
from a single cluster (B) where 
pixels are assumed identical, 
CE show a progressively 
higher degree of pixel 
clustering, with the color 
indicating cluster identity.



between 2 and 14. Our goal with kmeans clustering 
was to quantify withinwildfire heterogeneity at 
progressively finer resolution. The maximum number 
of clusters, M = 14, was dictated by the ability of k
means algorithm to converge for each wildfire when 
grouping pixellevel covariates under increasingly 
higher number of clusters. As a result, the average area 
of clusters decreased with the increasing M, i.e., the 
number of distinct spatial units within a wildfire. Given 
the average wildfire area at 265.7 ha, the average area 
of the spatial units under M = 3, 6, 14 clusters was at 
88.5, 44.3, and 17.7 ha. respectively.

Model fitting
The population process in our models hinges on 

the Gompertz growth model for singlespecies population 
dynamics. The discretetime Gompertz equation can 
be written as  y(t+1)/yt =exp (α)yt

δ,  where α and δ are 
parameters for growth and density dependence, 
respectively, and yt is the population size at time t. The 
model has been widely applied to model population 
time series in wildlife study systems with demonstrated 
inferential and forecasting value (Zhang 1997; Lebreton 
and Gimenez 2013; Koons et al. 2015). Population 
dynamics under the Gompertz model include exponential 
growth rates at low population densities that slow down 
as population size increases (Gamito 1998). While the 
model accounts for nonlinear growth, it can be 
parametrized in a regressionbased framework on the 
loglog scale (Eq. 1). 

Our modeling work borrows from previous studies 
that used generalized linear models (GLMs) and the 
Gompertz model to predict population cover using 
NLCD (Tredennick et al. 2016). The NLCD data for 
sagebrush cover is an integervalued number format, 
which motivated several of our modeling decisions. 
First, we used a Poisson generalized linear model for 
count data to be consistent with the data generation 
process (Tredennick et al. 2016). Second, because the 
Gompertz model in a Poisson regression requires a 
logtransformation of current cover in year t, we 
excluded pixels with zero values from the predictor 
of Eq. 1, resulting in yt > 0, and left the response 
variable intact (yt+1 ≥ 0). The exclusion of zerovalued 
observations is demographically justifiable for Eq. 1: 
a transition of the population cover in pixel p from 
zero in the current year t (yt,p = 0) to a positive value 
in the next year (yt+1,p > 0) could be due to seeds or 
seedlings present in the pixel that are not detectable 
via satellite imagery. We fitted a Poisson GLM with a 
loglink function (Eq. 1) to obtain the population 
growth and density dependence parameters, α and δ, 
respectively. To account for spatial heterogeneity within 
wildfires we added cluster identity of a pixel as a 
random effect and fit Poisson generalized linear mixed 

model (GLMM) to the same response (random effect 
indices in Eqs. 1 & 2 not shown). 

To estimate sagebrush cover immediately after a 
wildfire event (the initial population cover, θ0), we 
subset the sagebrush trajectories to include only the 
first five years after a wildfire and fit a Poisson GLM 
(at the regional and wildfire levels) and GLMM (at 
the level of clustered pixels) models with a loglink 
function using time since wildfire as a predictor and 
cluster as a random effect (Eq. 2). In the absence of 
subsequent wildfires this model assumed an exponential, 

densityindependent growth of sagebrush with rate θ 
during the initial years postwildfire event and was 
parametrized using the first five years of the sagebrush 
cover trajectory, where the initial postwildfire population 
size, θ0, is estimated by the intercept. 

Forecasting and accuracy assessment
In order to account for environmental variation, we 

fit the statistical models following Eqs. 1 & 2 at various 
levels of spatial heterogeneity represented by the k
meansbased clusters. In total, we fit the regional model 
and set of models for each wildfire (N = 430) at each 
level of spatial heterogeneity (M = 14), resulting in 
6021 models (i.e., 430 x 14 and the regional model). 
We incorporated withinwildfire spatial heterogeneity 
as random effects corresponding to variation at the 
level of clustered pixels. Consequently, the terms of 
the equations and the estimated parameters corresponding 
to growth and density dependence were indexed by i
th wildfire and jth cluster of pixels within that wildfire, 
i.e., α(i,j) and δ(i,j). The formulation of the Gompertz 
growth model in Eq. 1 and initial values parametrized 
statistically following Eq. 2 allowed us to project 
sagebrush cover in time using an analytical solution 
of the Gompertz model: 

where, u(t) is the predicted sagebrush cover in time 
t, K is a population estimated carrying capacity calculated 
as exp(α/δ), and C is a constant equal to log(θ0/K). 
Indices i and j correspond to the wildfire and the cluster 
of pixels within that wildfire, respectively. For the out
ofsample forecasts, indices m and n in Eq. 3 indicate 
spatially matched wildfire m to i and cluster n to cluster 
j based on environmental similarity. 

We evaluated the forecasting accuracy by estimating 
outofsample prediction errors according to our three 
research questions. To address the first question, how 
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well the Gompertz model can predict sagebrush cover 
after a wildfire event, we randomly subsampled 5% 
of the pixels from each dataset (without replacement) 
and obtained estimates of sagebrush natural regeneration 
at the regional level. We validated the regional model 
by calculating the errors between regional predictions 
and sagebrush cover trajectories in each wildfire. This 
approach represented ecological forecasting using 
pooled, regionwide population parameters only. To 
address the second question, how does spatial matching 
of wildfires improve the regional model, we generated 
predictions for each wildfire using population parameters 
transferred from the reference wildfire using the 
matching steps at the wildfire polygon level. Lastly, 
we matched two environmentally similar clusters of 
pixels between the reference and focal wildfires 
identified at the wildfire polygon level to test how 
withinwildfire variation impacts forecasting accuracy. 

We calculated several metrics of forecasting accuracy 
to summarize in and outofsample errors. To account 
for wildfires that occurred in different years and had 
varying lengths time series, we calculated mean absolute 
error (MAE) and rootmeansquared error (RMSE) ten 
years after a wildfire event (Eqs. 4 & 5). The mean 
absolute error weighs all the errors in the dataset equally, 
while the root mean squared error puts more weight 
on larger errors than smaller deviations between 
observed and predicted data. We also calculated 
proportional MAE and RMSE metrics to put the errors 
in each site relative to its prewildfire average sagebrush 
cover (Eqs. 6 & 7). Second, we computed the Bias of 
the predictions for each year to estimate the directionality 
of the error and how it changed over the forecast time 
(Eq. 8). We averaged the pixellevel sagebrush cover 
values within each wildfire for the validation, and 

present accuracy metrics based on the difference 
between our forecasts and the spatial average of 
sagebrush cover in each wildfire. 

where ei = (ŷi – ȳi) is the difference between the 
predicted, ŷ, and an average observed sagebrush cover, 
ȳ, in wildfire i. For models where we accounted for 
withinwildfire heterogeneity, we calculated an average 
error per wildfire as ei= ∑i,j(ŷ(i,j) ȳ(i,j))/M, where j 
indicates the cluster identity and M  {2, 3, …, 14} 
is the number of clusters. The MAE% and RMSE% 
metrics show proportional error relative to the wildfire 
average cover before the wildfire event, K*. 

We used ‘brms’ package to fit the regional model 
and the ‘lme4’ package for wildfire and cluster level 
models to obtain the estimates of the population 
parameters (Bates et al., 2007; Bürkner, 2017). For all 
data processing and figures we used R software (R 
Core Team 2021), including the following packages: 
‘raster’, ‘sf’, ‘tidyverse’, and ‘ggplot2’ (Wickham 
2011; Hijmans et al. 2015, p. 20; Pebesma 2018; 
Wickham et al. 2019).

Results
1. How accurately can a simple population growth 
model, i.e., the Gompertz model, forecast natural 
regeneration of postwildfire sagebrush cover?

The regional model trained on 5% of the pixels 
sampled randomly from each postwildfire polygon 
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Fig. 3 The results of the regional model representing the 
Gompertz population growth model fit to a subsample of 
pixels from each wildfire. The time series plot shows the 
NLCD and predicted sagebrush cover at the regional level. 
The red and blue thick lines show the average NLCD and 
predicted sagebrush trajectories, respectively, with shaded 
regions corresponding to one standard deviation (SD) around 
the mean. The thin blue lines illustrate 30 stochastic realizations 
of sagebrush cover over time using a subset of population 
parameters sampled from the posterior distribution.



predicted an asymptotic sagebrush cover of 16.6 % 
(CI95%: 9 – 25; SD = 4.0). In the absence of repeated 
wildfires, sagebrush recovery trajectories at the regional 
level followed a monotonic logistic population growth 
curve (Fig. 3, blue thick line). In contrast to pixellevel 
stochastic realizations that are highly variable, the 
average recovery is predicted to be positive but slow, 
with an estimated recovery time, indicated by the 
sagebrush trajectory reaching a plateau, of more than 
80 years. The predicted asymptotic sagebrush cover 
(16.6%) was greater compared to the average pre
wildfire sagebrush cover across sites at 11.6% (5% 
and 95% quantiles at 3.0 % and 20.5%, respectively). 
We attribute this difference of 4% in cover to the 
dramatic increase in sagebrush cover following initial 
years after the wildfire in the NLCD (Fig. 3): increasing 
the intrinsic growth rate under constant density
dependence in the Gompertz model would lead to 
higher asymptotic cover value at equilibrium. 
Nevertheless, the NLCD cover estimates were within 
2 SD of the predictions in asymptotic cover. The MAE 
for the regional model was higher than the wildfire 
and clusterlevel models regardless of whether the 
validation data set was in or outofsample. For the 
regional model, the average outofsample MAE ten 
years after a wildfire event was 7.5% cover (±5.1% 
SD), and the proportional error was 0.65. The regional 
predictions considerably underestimated sagebrush 
cover during the initial years after a wildfire event, 
although the negative bias in the predictions diminished 
over time (Fig. 4, trajectory labeled as “Region”). The 
median bias was greatest seven years after a wildfire 
event. Specifically, the regional model underestimated 

the averaged sagebrush cover by 7.3% (CI95%: 14.92 
– 0.43; SD = 4.76), and this value decreased over time 
to 2.84% cover (CI95%: 12.02 – 6.03; SD = 3.8) in 
the last year of the validation data set.

2. How does spatial matching of wildfires combined 
with the population model improve the forecasting 
accuracy of natural regeneration?

Matching pairs of environmentally similar wildfires 
led a nearly twofold reduction in outofsample MAE, 
relative to the regional model. The MAE for sagebrush 
cover predicted using data from spatially matched 
wildfires was 4.8% (± 5.2% SD) with a proportional 
error of 0.49 (Fig. 5, Appendix S1: Table S2). The bias 
observed at the level of matched wildfires was 
considerably lower than the regional predictions. 
However, the forecasts still underpredicted sagebrush 
cover trajectories for almost the entire duration of the 
validation dataset (Fig. 4, trajectory labeled as “Site”). 
The greatest bias was between the 6th and 11th years 
at 2.7%, and the temporal patterns in the bias were 
comparable to the regional model. 

3. Does further accounting for withinwildfire 
heterogeneity improve the forecasting accuracy of 
natural regeneration?

The addition of random effects to the GLMs at the 
level of withinwildfire variation, i.e., the results of k
means clustering corresponding to withinwildfire 
heterogeneity, resulted in a reduction in the errors 
compared to the wildfirelevel models (Fig. 5). Overall, 
a higher number of clusters led to improvements in 
MAE, MAE%, and bias (Appendix S1: Table S2), but 
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Fig. 4 Bias in the outof
sample forecasts of 
sagebrush cover by each of 
the tested environmental 
clustering scheme complexity. 
The cluster number refers to 
the number of environmental 
clusters used in the kmeans 
algorithm for spatial matching. 
The bias is calculated as the 
mean of the outofsample 
errors for each year. The 
colored lines indicate average 
bias across all wildfires, 
whereas the shaded regions 
show one standard deviation 
(SD) around the mean. 



the improvements showed a nonlinear pattern and 
diminishing improvements as the number within
wildfire clusters increased. After we included the 
random effects and spatial matching at the wildfire 
and withinwildfire levels, the MAE was reduced to 
3.5%, with a marginally improved proportional error 
of 0.48. Similarly, the standard deviation of the errors 
was the smallest for the model with 14 clusters. The 
bias in these errors was positive, indicating that models 
overpredicted sagebrush cover. Bias began the 6th year 
after a wildfire, and was smallest in the model with 14 
clusters. After the 6th year, the trend stabilized at 
1.17% (CI95%: 8.43 – 6.25; SD = 4.58) for the 
subsequent years of the time series (Fig. 4, trajectories 
labeled as “Cluster 314”). As the number of clusters 
increased, the forecasting accuracy also increased, 

indicating the benefits of accounting for environmental 
heterogeneity when matching environmentally similar 
wildfires and clusters of pixels. However, the 
improvements in forecasting accuracy largely plateaued 
in models with ten clusters or greater.

Discussion
In this study, we combined remotely sensed data 

with population models to forecast natural regeneration 
of sagebrush after wildfire, foundational shrub species 
in the Great Basin. Our study represents a step towards 
developing models for natural regeneration that could 
be used to help prioritize restoration efforts in the 
sagebrush steppe (Duchardt et al. 2021). Ecological 
forecasts of postwildfire natural regeneration could 
point land managers to where the recovery potential 
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Fig. 5 The relationship between forecasting accuracy and environmental clustering scheme complexity. (A) shows the error 
between predicted and observed sagebrush cover 10 years after a wildfire event. (B) shows the distribution of errors across 
wildfires calculated as the difference between the predicted and observed average trajectories. 



is high and sagebrush can recover with minimal 
intervention. The relatively low level of absolute error 
(i.e., MAE 3.54% cover for the Cluster 14 model) 
achieved by the bestperforming model illustrates how 
the combination of simple and robust analytical tools 
can result in satisfactory forecasting accuracy with 
relevance for land management decisions. In contrast 
to field plotlevel studies that suggest the rate of natural 
regeneration of sagebrush steppe is low and vegetation 
treatment effects are highly variable (Knutson et al. 
2014; Copeland et al. 2018; Germino et al. 2018), our 
analysis at the regional level demonstrates that on 
average, sagebrush population recovery after a single 
wildfire tends to follow similar trajectories. 

The regionallevel model provides insights into 
natural regeneration processes in sagebrush at a broad 
geographical scale, despite relatively low forecasting 
accuracy. In the absence of repeated wildfires, our 
results suggest that sagebrush recovery is likely to be 
slow, with an estimated recovery time of more than 
80 years (Fig. 3). Illustrative of this pattern, ten years 
after a wildfire, the average recovery across all sites 
was 62% relative to the prewildfire sagebrush cover, 
while only 14% of the sites were predicted to recover 
at or above the prewildfire levels at this stage. The 
estimated rate is lower than the rate of natural regeneration 
characteristic of higherelevation sagebrush populations, 
where the recovery could take 2045 years (Ziegenhagen 
2003; Baker 2006; Ziegenhagen and Miller 2009). 
Although the NLCD represents sagebrush at the genus 
level, the mean and median average elevation across 
our sites was under 1700 m and is likely to be more 
representative of the Wyoming big sagebrush (A.t. 
wyomingensis). Wyoming big sagebrush in lower 
elevation landscapes historically has longer firereturn 
intervals and slower rates of natural regeneration (Miller 
et al. 2011; Bates et al. 2020), making them vulnerable 
to altered fire regimes and ecosystem transformation 
(Mahood and Balch 2019). 

The negative bias in the regional model supports 
the evidence from previous field studies that satellite
derived estimates of shrub cover, such as the NLCD, 
may overestimate cover in the initial stages, i.e., 13 
years, after a wildfire event (Applestein and Germino 
2021). Starting from the second year postwildfire, our 
model’s underestimation of sagebrush cover, relative 
to NLCD time series,  likely emerges from the model’s 
representation of demography. The combination of 
growth rate and density dependence feedbacks in the 
Gompertz model predicts considerably slower recovery 
in the early stages of regeneration than that observed 
in the NLCD. We consider this underestimation a 
feature of the Gompertz model, not an analytical 
shortcoming, as our biologically meaningful models 

atone for the tendency in the NLCD data to overestimate 
early recovery, likely due to satellite measurement 
error (Applestein and Germino 2021). The mortality 
of young sagebrush recruits during the transient stages 
of regeneration postwildfire is another demographic 
mechanism that may slow down the rate of natural 
regeneration and is undetectable from the analysis of 
satellite data alone (Shriver et al. 2019). In addition 
to demographic mechanisms, errors in the NLCD data, 
including potential missed detections of smallstatured 
sagebrush and errors propagated from the Landsat 
spectral reflectance, may lead to inflated estimates of 
density dependence and contribute to the negative 
trend in forecasting bias (Lebreton and Gimenez 2013). 
Explicitly accounting for noise in the statistical Gompertz 
models will likely improve the future forecasts of post
wildfire regeneration of sagebrush populations.

Our framework corresponds to a scenario where 
land managers must decide on restoration action 
immediately after a wildfire, with minimal sitespecific 
data on sagebrush population dynamics. The capacity 
to achieve transferable forecasts across the Great Basin 
ecoregion relied upon spatial matching to account for 
environmental heterogeneity. The spatial matching of 
wildfires and withinwildfire pixel clusters revealed 
that accounting for spatial heterogeneity by dividing 
wildfires into 510 environmentally distinct units may 
be a suitable scale for outofsample sagebrush cover 
forecasts (Fig. 5). When evaluating the performance 
of the models ten years after a wildfire, spatial matching 
enabled absolute error in sagebrush forecasts within 
1% cover of those using the insample predictions 
(Appendix S1: Table S2). We observed an increasing 
improvement in forecasting accuracy from the regional 
level to higher clustering levels within wildfires. This 
trend illustrates how spatial heterogeneity within and 
among wildfires driven by climate, soil properties, 
topography, and predisturbance conditions can represent 
a significant source of variation in plant demography 
and forecasting errors. Our results suggest that an 
optimal spatial grain for forecasting natural regeneration 
and restoration planning may include coarsely divided 
spatial units within wildfires, while increasingly fine
scale spatial units bear diminishing returns and may 
present logistical and analytical costs.

We observed the most significant reduction in the 
forecast errors between the regional and wildfirelevel 
models with subsequent diminishing improvements 
after accounting for heterogeneity at progressively 
finer spatial grain (Fig. 5). While withinwildfire 
variation proved important, the relationship between 
the errors and the degree of spatial clustering largely 
plateaued beyond ten clusters, contrasting with 
experimental and observational evidence that highlights 
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local conditions as a strong driver of postwildfire 
sagebrush recovery (e.g., Arkle et al., 2022; Germino 
et al., 2018). Specifically, our results suggest that land 
management units, e.g., relatively small wildfires or 
grazing allotments, could be a representative spatial 
grain to account for spatial heterogeneity when 
forecasting an average trajectory for the recovery of 
sagebrush cover. One potential explanation for this 
discrepancy is that cover trajectories reflect temporal 
changes that integrate over the entire plant life cycle. 
In contrast, focusing on a single demographic stage, 
e.g., individual recruits or seedlings, leaves more room 
for demographic stochasticity and stagespecific 
environmental responses (Yang et al. 2022). 

Combining the Gompertz growth model with the 
NLCD trajectories and hierarchical spatial matching 
enabled a scalable approach to quantify the population 
process underpinning natural regeneration in sagebrush 
across the Great Basin. Our approach estimates 
biologically interpretable parameters at large spatial 
extents, a historically challenging task in plant ecology 
(but see Schultz et al., 2022; Shriver et al., 2019). 
These parameters include population growth rate and 
density dependence, both relevant to address applied 
and theoretical questions. For example, the intrinsic 
growth rate of a foundational shrub species directly 
links to ecosystem resilience, a characteristic that is 
central to conservation management and ecosystem 
integrity (Chambers et al. 2017). A crossscale analysis 
of sagebrush resilience could aid resource managers 
in determining restoration plans based on the already 
established management guidelines of habitat resilience 
and resistance (Chambers et al. 2019; Arkle et al. 2022). 
Our study qualitatively expands previous efforts in 
predicting sagebrush steppe resilience (mainly based 
on biophysical site characteristics) by incorporating 
endogenous population processes that are quantified 
from observed cover trajectories following a wildfire 
event. Studies that relate satellitederived population 
dynamics to biophysical conditions will improve our 
understanding of natural regeneration in the sagebrush 
steppe. For example, in conjunction with sitespecific 
biophysical data, predicted positive recovery in low
resilience sites could provide valuable insights to 
improve the forecasting models or reveal biological 
relationships that warrant further empirical investigations. 
Lastly, the strength of density dependence in a population 
quantified by the Gompertz model can be a determinant 
of multiple dimensions of population and community 
stability, including resistance and persistence responses 
to environmental variation (Harrison 1979; Radchuk 
et al. 2019b).

Remote sensing opens new ways to detect and 
analyze density dependence and coexistence in natural 

ecosystems on a large scale. Nevertheless, remotely 
sensed data also presents new problems related to 
imperfect detection of vegetation cover from space
borne satellites (Caughlin et al. 2021). In the context 
of the NLCD vegetation cover trajectories, some error 
in cover measurements is likely inescapable (Rigge et 
al. 2019; Applestein and Germino 2021). Methods that 
can account for imperfect detection when modeling 
population trends, such as statespace models widely 
used in wildlife population ecology are likely to prove 
invaluable for quantifying plant population trends from 
remotely sensed data (e.g., Dennis et al., 2006). As an 
example, models that rely on the statespace approach 
are promising to improve ecological inference and 
predictions (AugerMéthé et al. 2021). The statespace 
approach would help disentangle measurement errors 
from the endogenous and exogenous sources of variation 
(Dietze 2017), and allow for a more nuanced analysis 
of spatiotemporal demographic shifts (Schultz et al. 
2022). Taxaspecific time series data, such as the 
Landsatderived percent cover data used in our study, 
are increasingly available (GudexCross et al. 2017; 
Singh et al. 2020). However, when speciesspecific 
time series data are not available, our approach can be 
applied to taxonomically coarse data, such as time 
series of per cent tree cover. For example, Caughlin 
et al. (2021) modeled forest recovery using the logistic 
growth model. A combination of remote sensing, spatial 
matching, and statespace models that account for 
temporal autocorrelation will likely expand the 
forecasting horizon for population changes (Adler et 
al. 2020). 

In the context of the Great Basin ecological restoration, 
forecasts of natural regeneration can be instrumental 
during the timesensitive planning and implementation 
of management interventions after a wildfire (Bradford 
et al. 2020). A prompt management response to a 
wildfire event can be critical given the timesensitive 
decisions in light of the reduced resistance to cheatgrass 
(Bromus tectorum) invasions or favorable weather 
windows for a restoration treatment (Applestein et al. 
2021; Copeland et al. 2021; Pilliod et al. 2021). Our 
forecasting framework enables early predictions of 
natural regeneration without local field data, making 
the information available for the initial management 
response. To date, managers and practitioners already 
use landscape and wildfire information that can help 
predict the likelihood of natural regeneration, including 
topographic information, burn severity, and site resilience 
indices (USDI 2007; Arkle et al. 2014). Additional 
ecological data is available from the NLCD and Land 
Treatment Exploration Tool that provide prewildfire 
estimates of sagebrush cover and managementoriented 
site characteristics (Pilliod et al. 2018). To further assist 
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management decisions, our study contributes quantitative 
forecasts of sagebrush population recovery that could 
be used to develop rapid response plans for restoration, 
with minimal data collection. 

The predictions can also readily integrate site
specific information that will have become available 
during the first years of monitoring, paving the way 
to improvements in the forecasts over time and adaptive 
management practices (Applestein et al., 2022; Brudvig 
and Catano, In press; Dietze, 2017). The earlystage 
forecast based on spatial matching of the reference 
and the focal wildfires assumes that the latter follows 
the same recovery trajectory as the former based on 
ecological similarities between them. However, we 
suggest that empirically estimated sagebrush cover 
based on local ecological monitoring can substitute 
the statistically estimated parameter (i.e., θ0 in Eqs. 2 
& 3) to reflect the initial population cover at the onset 
of recovery. Similarly, postwildfire monitoring could 
provide an updated, sitespecific parameter for the 
densityindependent population growth, α, indicating 
the direction of a growth trajectory and how fast the 
population may approach its predicted equilibrium. 
Postwildfire monitoring data will be essential to reflect 
the effect of local climate fluctuations and sitespecific 
biotic conditions that can dramatically change long
term population dynamics (Shriver et al. 2019; O’Connor 
et al. 2020). Importantly, forecasts may point to post
wildfire areas with high resilience and recovery potential 
that may obviate the need to apply active restoration 
measures and reallocate resources to other areas. Taken 
together, the initial and iteratively improved forecasts 
of resilience in the foundational shrub species provide 
a platform for an adaptive management framework 
and productive feedback between ecological monitoring, 
modeling, and decision making (McCord and Pilliod 
2021).

Our approach provides modeling tools for forecasting, 
following calls to advance simple and transparent 
ecological forecasts (Dietze et al. 2018; Shriver et al. 
2018). Several improvements are within reach to adapt 
our framework to local applications and enhance 
forecasting accuracy. These may include: (i) improved 
remotely sensed data products and statistical methods 
to account for measurement error (Allred et al. 2021); 
(ii) informing predictive models with local knowledge 
and monitoring data (McCord and Pilliod 2021); and 
improving spatial matching without the necessity to 
refit the statistical models. For example, combining 
spatial and temporal matching may address differences 
among wildfires separated by decades as climate change 
continues (Kleinhesselink and Adler 2018). Non
parametric matching can also utilize other remotely 
sensed data, including the occurrence or abundance 

of invasive annual grasses (e.g., Bromus tectorum) 
that can affect the recovery. Finally, analytical additions 
to the framework could include scenarios of repeated 
wildfires, reduced firereturn intervals, and non
stationary ecological interactions that evolve with 
changing disturbance regimes (Mahood and Balch 2019). 

Conclusions
The presented forecasting framework combines 

satellite information, spatial matching and simple 
population process models that can be readily integrated 
into management scenarios and support local decision
making. In contrast to land cover change methods that 
rely on detecting linear trends (e.g., Shi et al. 2022) , 
the Gompertz model represents biologicallymeaningful 
processes, including leveling off for populations near 
carrying capacity. The Gompertz model is also 
straightforward to fit using widely available software 
packages for generalized linear models (GLMs). In 
conjunction with the Gompertz model, spatial matching 
can account for regional heterogeneity by incorporating 
diverse sources of information. Our spatial matching 
approach could be adapted to integrate experiential 
and traditional ecological knowledge, providing 
opportunities for crossdisciplinary collaborations and 
codevelopment of management strategies (Berkes et 
al. 2000; Kimmerer 2011; Fleischman et al. 2022). 
Altogether, our approach provides scalable forecasts 
of natural regeneration to support costefficient 
restoration strategies in postwildfire landscapes. 
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